• Zum Hauptinhalt springen
  • Zum Footer springen
  • Deutsch - de
  • English - en

    SyNergy - Mu...

    • About
      • About us
      • Our Measures
      • Members
      • Cluster Management
      •  PhD & Postdoc representatives
      • Scientific Advisory Board
      •  International cooperation partners
      • Timeline
      •  Media Kit
      • Contact
    • News & Events
      • News
      • Events
      • In the News
      • Open Positions
    • Research
      • Publications
      • Our Research Focus
      • Technology Hubs
      • Research Spotlight
      • Research Data Management
      • Sustainability Initiative
      •  Code of Conduct
    • Science & Society
      • For Schools & Students
      • Public Events
      • Podcasts
      • Videos
    • Support for Diversity & Equity
      • Newcomer Center
      • Gender Equality Program
      • Early Career Investigator Program
    1. Home
    2. News & Events
    3. News
    4. SCP-Nano: A new technology to visualize banocarriers in cells and tissues
    News | 14/01/2025 | Press Release

    SCP-Nano: A new technology to visualize banocarriers in cells and tissues

    How can we ensure that life-saving drugs or genetic therapies reach their intended target cells without causing harmful side effects? Researchers at Helmholtz Munich, Ludwig-Maximilians-Universität (LMU) and Technical University Munich (TUM) have taken an important step to answer this question. They have developed a method that, for the first time, enables the precise detection of nanocarriers – tiny transport vehicles – throughout the entire mouse body at a single-cell level. This innovation, called “Single-Cell Profiling of Nanocarriers” or short “SCP-Nano”, combines advanced imaging with artificial intelligence to provide unparalleled insights into the functionality of nanotechnology-based therapies. The results, published in Nature Biotechnology, pave the way for safer and more effective treatments, including mRNA vaccines and gene therapies.
    Ali Ertürk / Helmholtz Munich
     Visualization of lipid nanoparticles using SCP nanotechnology at the cellular level in lung tissue

    The Role of Nanocarriers in Modern Medicine

    Nanocarriers will play a central role in the next wave of life-saving medicines. They enable the targeted delivery of drugs, genes, or proteins to cells within patients. With SCP-Nano, researchers can analyze the distribution of extremely low doses of nanocarriers throughout the entire mouse body, visualizing each cell that has taken them up. SCP-Nano combines optical tissue clearing, light-sheet microscopy imaging, and deep-learning algorithms. First, whole mouse bodies are made transparent. After the three-dimensional imaging of whole mouse bodies, nanocarriers within the transparent tissues can then be identified down to the single-cell level. By integrating AI-based analysis, researchers can quantify which cells and tissues are interacting with the nanocarriers and precisely where this occurs.

    • Read the full press release on the website of Helmholtz Munich

    Participating Universities
     LMU logo in white
     TUM logo in white
    Partner Institutions
     Logo DZNE in white
    Helmholtz Munich logo in white 
     Logo Max Planck Gesellschaft 

    SyNergy is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) within the framework of the German Excellence Strategy (EXC 2145 SyNergy – ID 390857198). The Excellence Strategy promotes outstanding research at German universities. 

    Contact

    Munich Cluster for Systems Neurology (SyNergy)

    Feodor-Lynen-Str. 17
    81377 Munich
    +49 (0)89 4400-46497
    yüubgybScјuipxјrvf;ulyztmi
    Editor login
    Imprint | Data-Safety