Munich Cluster for Systems Neurology
print


Breadcrumb Navigation


Content

AMPK-regulated miRNA-210-3p is activated during ischaemic neuronal injury and modulates PI3K-p70S6K signalling.

J Neurochem. 2021 Mar 11. doi: 10.1111/jnc.15347. Epub ahead of print. PMID: 33694332.

Authors/Editors: Pfeiffer S, Tomašcová A, Mamrak U, Haunsberger SJ, Connolly NMC, Resler A, Düssmann H, Weisová P, Jirström E, D'Orsi B, Chen G, Cremona M, Hennessy BT, Plesnila N, Prehn JHM.
Publication Date: 2021

Abstract

Progressive neuronal injury following ischaemic stroke is associated with glutamate-induced depolarisation, energetic stress and activation of AMP-activated protein kinase (AMPK). We here identify a molecular signature associated with neuronal AMPK activation, as a critical regulator of cellular response to energetic stress following ischaemia. We report a robust induction of microRNA miR-210-3p both in vitro in primary cortical neurons in response to acute AMPK activation and following ischaemic stroke in vivo. Bioinformatics and reverse phase protein array analysis of neuronal protein expression changes in vivo following administration of a miR-210-3p mimic revealed altered expression of phosphatase and tensin homolog (PTEN), 3-phosphoinositide-dependent protein kinase 1 (PDK1), ribosomal protein S6 kinase (p70S6K) and ribosomal protein S6 (RPS6) signalling in response to increasing miR-210-3p. In vivo, we observed a corresponding reduction in p70S6K activity following ischaemic stroke. Utilising models of glutamate receptor overactivation in primary neurons, we demonstrated that induction of miR-210-3p was accompanied by sustained suppression of p70S6K activity and that this effect was reversed by miR-210-3p inhibition. Collectively, these results provide new molecular insight into the regulation of cell signalling during ischaemic injury, and suggest a novel mechanism whereby AMPK regulates miR-210-3p to control p70S6K activity in ischaemic stroke and excitotoxic injury.

Related Links