Munich Cluster for Systems Neurology
print


Breadcrumb Navigation


Content

Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities.

Brain. 2021 Oct 9:awab253. doi: 10.1093/brain/awab253. Epub ahead of print. PMID: 34626176.

Authors/Editors: Malik R, Beaufort N, Frerich S, Gesierich B, Georgakis MK, Rannikmäe K, Ferguson AC, Haffner C, Traylor M, Ehrmann M, Sudlow CLM, Dichgans M.
Publication Date: 2021

Abstract

White matter hyperintensities (WMH) are among the most common radiological abnormalities in the ageing population and an established risk factor for stroke and dementia. While common variant association studies have revealed multiple genetic loci with an influence on their volume, the contribution of rare variants to the WMH burden in the general population remains largely unexplored. We conducted a comprehensive analysis of this burden in the UK Biobank using publicly available whole-exome sequencing data (n up to 17 830) and found a splice-site variant in GBE1, encoding 1,4-alpha-glucan branching enzyme 1, to be associated with lower white matter burden on an exome-wide level [c.691+2T>C, β = −0.74, standard error (SE) = 0.13, P = 9.7 × 10−9].

Applying whole-exome gene-based burden tests, we found damaging missense and loss-of-function variants in HTRA1 (frequency of 1 in 275 in the UK Biobank population) to associate with an increased WMH volume (P = 5.5 × 10−6, false discovery rate = 0.04). HTRA1 encodes a secreted serine protease implicated in familial forms of small vessel disease. Domain-specific burden tests revealed that the association with WMH volume was restricted to rare variants in the protease domain (amino acids 204–364; β = 0.79, SE = 0.14, P = 9.4 × 10−8). The frequency of such variants in the UK Biobank population was 1 in 450. The WMH volume was brought forward by ∼11 years in carriers of a rare protease domain variant.

A comparison with the effect size of established risk factors for WMH burden revealed that the presence of a rare variant in the HTRA1 protease domain corresponded to a larger effect than meeting the criteria for hypertension (β = 0.26, SE = 0.02, P = 2.9 × 10−59) or being in the upper 99.8% percentile of the distribution of a polygenic risk score based on common genetic variants (β = 0.44, SE = 0.14, P = 0.002). In biochemical experiments, most (6/9) of the identified protease domain variants resulted in markedly reduced protease activity. We further found EGFL8, which showed suggestive evidence for association with WMH volume (P = 1.5 × 10−4, false discovery rate = 0.22) in gene burden tests, to be a direct substrate of HTRA1 and to be preferentially expressed in cerebral arterioles and arteries.

In a phenome-wide association study mapping ICD-10 diagnoses to 741 standardized Phecodes, rare variants in the HTRA1 protease domain were associated with multiple neurological and non-neurological conditions including migraine with aura (odds ratio = 12.24, 95%CI: 2.54–35.25; P = 8.3 × 10−5]. Collectively, these findings highlight an important role of rare genetic variation and the HTRA1 protease in determining WMH burden in the general population.

Related Links