Munich Cluster for Systems Neurology
print


Breadcrumb Navigation


Content

Dose-Dependent and Subset-Specific Regulation of Midbrain Dopaminergic Neuron Differentiation by LEF1-Mediated WNT1/b-Catenin Signaling.

Front Cell Dev Biol. 2020 Oct 26;8:587778. doi: 10.3389/fcell.2020.587778. PMID: 33195246; PMCID: PMC7649324.

Authors/Editors: Nouri P, Götz S, Rauser B, Irmler M, Peng C, Trümbach D, Kempny C, Lechermeier CG, Bryniok A, Dlugos A, Euchner E, Beckers J, Brodski C, Klümper C, Wurst W, Prakash N.
Publication Date: 2020

07_guo

Abstract

Blood pressure (BP) was inconsistently associated with migraine and the mechanisms of BP-lowering medications in migraine prophylaxis are unknown. Leveraging large-scale summary statistics for migraine (Ncases/Ncontrols = 59,674/316,078) and BP (N = 757,601), we find positive genetic correlations of migraine with diastolic BP (DBP, rg = 0.11, P = 3.56 × 10−06) and systolic BP (SBP, rg = 0.06, P = 0.01), but not pulse pressure (PP, rg = −0.01, P = 0.75). Cross-trait meta-analysis reveals 14 shared loci (P ≤ 5 × 10−08), nine of which replicate (P < 0.05) in the UK Biobank. Five shared loci (ITGB5, SMG6, ADRA2B, ANKDD1B, and KIAA0040) are reinforced in gene-level analysis and highlight potential mechanisms involving vascular development, endothelial function and calcium homeostasis. Mendelian randomization reveals stronger instrumental estimates of DBP (OR [95% CI] = 1.20 [1.15–1.25]/10 mmHg; P = 5.57 × 10−25) on migraine than SBP (1.05 [1.03–1.07]/10 mmHg; P = 2.60 × 10−07) and a corresponding opposite effect for PP (0.92 [0.88–0.95]/10 mmHg; P = 3.65 × 10−07). These findings support a critical role of DBP in migraine susceptibility and shared biology underlying BP and migraine.

Related Links