Munich Cluster for Systems Neurology
print


Breadcrumb Navigation


Content

Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning.

Alzheimers Dement. 2020 Feb 11. doi: 10.1002/alz.12032. [Epub ahead of print]

Authors/Editors: Franzmeier N, Koutsouleris N, Benzinger T, Goate A, Karch CM, Fagan AM, McDade E, Duering M, Dichgans M, Levin J, Gordon BA, Lim YY, Masters CL, Rossor M, Fox NC, O'Connor A, Chhatwal J, Salloway S, Danek A, Hassenstab J, Schofield PR, Morris JC, Bateman RJ; Alzheimer's disease neuroimaging initiative (ADNI); Dominantly Inherited Alzheimer Network (DIAN), Ewers M.
Publication Date: 2020


Abstract

02_franzmeier

INTRODUCTION: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge.


METHODS: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer's disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated.


RESULTS: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R2 = 24%) and memory (R2 = 25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%-75%.


DISCUSSION: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.

Related Links