Munich Cluster for Systems Neurology
print


Breadcrumb Navigation


Content

Trnp1 organizes diverse nuclear membrane-less compartments in neural stem cells.

EMBO J. 2020;e103373. doi:10.15252/embj.2019103373 [published online ahead of print, 2020 Jul 6]

Authors/Editors: Esgleas M, Falk S, Forné I, Thiry M, Najas S, Zhang S, Mas-Sanchez A, Geerlof A, Niessing D, Wang Z, Imhof A, Götz M.
Publication Date: 2020

07_esgleas

Abstract

TMF1‐regulated nuclear protein 1 (Trnp1) has been shown to exert potent roles in neural development affecting neural stem cell self‐renewal and brain folding, but its molecular function in the nucleus is still unknown. Here, we show that Trnp1 is a low complexity protein with the capacity to phase separate. Trnp1 interacts with factors located in several nuclear membrane‐less organelles, the nucleolus, nuclear speckles, and condensed chromatin. Importantly, Trnp1 co‐regulates the architecture and function of these nuclear compartments in vitro and in the developing brain in vivo . Deletion of a highly conserved region in the N‐terminal intrinsic disordered region abolishes the capacity of Trnp1 to regulate nucleoli and heterochromatin size, proliferation, and M‐phase length; decreases the capacity to phase separate; and abrogates most of Trnp1 protein interactions. Thus, we identified Trnp1 as a novel regulator of several nuclear membrane‐less compartments, a function important to maintain cells in a self‐renewing proliferative state.

Related Links